Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew J. Robertson and Daniel J. Price*

WestCHEM, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland

Correspondence e-mail:
d.price@chem.gla.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.049$
$w R$ factor $=0.127$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3,3', $\mathbf{4}^{\prime}$-Tetramethylbiphenyl

2,3,3', 4^{\prime}-Tetramethylbiphenyl, $\mathrm{C}_{16} \mathrm{H}_{18}$, was synthesized in a palladium-catalysed boronic acid cross-coupling reaction. In the solid state, these weakly interacting unsymmetrical molecules show an apparent dimerization of the orthodimethylphenyl groups, a packing motif that is seen in a significant number of other ortho-dimethylphenyl-containing compounds.

Comment

2,3,3', 4'-Tetramethylbiphenyl, (I), has been reported previously as a minor product in an oxidative coupling reaction (Norman et al., 1973). We obtained (I) in excellent yield using a Suzuki cross-coupling reaction (Miyaura, 2002). The unsymmetrical molecules of this compound crystallize in the space group $P \overline{1}$ with an asymmetric unit consisting of a single molecule (Fig. 1). All bond distances and angles in the molecule are normal. The two benzene rings are twisted by $54.10(7)^{\circ}$ from coplanarity. The molecule adopts a cis conformation in the solid, with all the methyl groups to one side of the biphenyl rings.

(I)

Overall, the packing of these unsymmetrical molecules is complex and not easily visualized. However, one intermolecular motif does stand out; the ortho-dimethylphenyl groups appear to show a certain self-complementarity. Examination of all the intermolecular contacts reveals that the shortest intermolecular $\mathrm{C} \cdots \mathrm{C}(\sim 3.7 \AA)$ and $\mathrm{C}-\mathrm{H} \cdots \operatorname{aryl} \pi$ interactions are associated with this motif (Fig. 2). Both orthodimethylphenyl rings show this interaction, and both have an inversion centre between the interacting molecules. The orientation of each methyl group is such that one of the H atoms is directed to the midpoint of an aryl $\mathrm{C} \cdot \mathrm{C}$ bond. This looks like a weak hydrogen-bonding interaction. An exam-

Received 1 July 2005 Accepted 13 July 2005 Online 20 July 2005

Figure 1
The molecular structure of (I). Displacement ellipsoids are shown at the 70% probability level.
ination of the Cambridge Structural Database (Version 5.26; Allen, 2002) was performed to estimate the significance of this motif. We find that 19% of ortho-dimethylaryl-containing compounds appear to show this motif, having the six $\mathrm{C} \cdots \mathrm{C}$ intermolecular interactions shown in Fig. 2 shorter than $4 \AA$. Analysis of the distribution of torsion angles that correspond to $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 14-\mathrm{H} 14 A$ and $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 13-\mathrm{H} 13 B$ in (I) was performed on 198 structures showing this interaction (group 1), and for the remaining 848 structures that do not (group 2). Although the location of H atoms in X-ray crystallography is often problematic, it is common practice to refine this angle even when all else is constrained. Thus, we believe this analysis to be meaningful. Both groups of compounds show peaks in the histograms at 0,30 and 60°, with an anomalous spike superimposed on a more normal distribution of the peak at 60°, and no statistically significant difference is seen in the distribution of methyl group orientations between these two groups (Fig. 3).

These results suggest that the interaction is not greatly affected by the $-\mathrm{CH}_{3}$ orientation. They do not exclude the idea that a very weak hydrogen-bonding interaction may exist here. It must also be realised that, in the group 2 stuctures, other interaction motifs and geometries may give rise to the extra stability of the $\sim 60^{\circ}$ methyl group torsion angle.

Experimental

A mixture of 3,4-dimethylbromobenzene ($4.400 \mathrm{~g}, 23.75 \mathrm{mmol}$), 2,3dimethylphenylboronic acid $(4.279 \mathrm{~g}, 28.55 \mathrm{mmol})$, palladium(II) acetate $(0.1334 \mathrm{~g}, \quad 0.595 \mathrm{mmol})$, triphenylphosphine $(0.3889 \mathrm{~g}$, 1.486 mmol), sodium(I) carbonate ($5.083 \mathrm{~g}, 47.55 \mathrm{mmol}$), acetonitrile $(30 \mathrm{ml})$ and water (30 ml) was heated to reflux for 24 h under an inert nitrogen atmosphere. The mixture was acidified with dilute HCl to remove the carbonate ions. The reaction mixture was then filtered, and the solvent removed on a rotary evaporator. Distilled water $(30 \mathrm{ml})$ was then added, and the organic product extracted into dichloromethane $(3 \times 30 \mathrm{ml})$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product was recrystallized from ethanol ($3.856 \mathrm{~g}, 77.1 \%$). $\mathrm{C}_{16} \mathrm{H}_{18}$ requires C 91.37, H 8.63%; found C $91.23, \mathrm{H}$ $8.62 \% .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.25$ (C1), 140.10 (C7), 137.09 (C3 or C9), 136.09 (C9 or C3), 134.84 (C10), 134.03 (C2), 130.66 (C11), 129.21 (C4), 128.58 (C8), 127.71 (C5), 126.80 (C6 or

Figure 2
The motif showing the shortest intermolecular interactions in (I). The key $\mathrm{C} \cdots \mathrm{C}$ distances are shown in red, and one of the four $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ torsion angles is shown in green.

Figure 3
A plot of the distribution of $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ torsion angles for ortho-dimethylphenyl-containing compounds which appear to show this type of interaction (group 1: red) and for the group of ortho-dimethylphenyl that do not (group 2: blue). Data taken from 1046 structures in the Cambridge Structural Database.

C12), $125.15(\mathrm{C} 12$ or C 6$), 20.73\left(\mathrm{CH}_{3}\right), 19.86\left(\mathrm{CH}_{3}\right), 19.48\left(\mathrm{CH}_{3}\right)$, $17.02\left(\mathrm{CH}_{3}\right) ; m / z 210.11[M]$ (ESMS +); $m / z 210.1408\left[{ }^{12} \mathrm{C}_{16}{ }^{1} \mathrm{H}_{18}\right.$] (high resolution ESMS+); IR ν / cm^{-1} (KBr): 3160, 3038, 3018, 2995, 2985, 2943, 2920, 2882, 2860, 1502, 1463, 1455, 1380, 1308, 1278, 1243, 1221, 1197, 1180, 1163, 1136, 1110, 1083, 1061, 1045, 1020, 985, 965, 921, 898, 891, 820, 780, 758, 746, 720, 642, 600.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18}$
$M_{r}=210.30$
Triclinic, $P \overline{1}$
$a=7.6018$ (5) A
$b=7.7685$ (5) \AA
$c=11.6547$ (7) \AA
$\alpha=77.106$ (3)
$\beta=81.047$ (3) ${ }^{\circ}$
$\gamma=64.506(3)^{\circ}$
$V=604.19(7) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.156 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4912 \\
& \quad \text { reflections } \\
& \theta=0.1-27.5^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.45 \times 0.16 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

organic papers

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.830, T_{\text {max }}=0.991$
9018 measured reflections
2731 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.127$
$S=1.04$
2731 reflections
152 parameters
H -atom parameters constrained

1819 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 9$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0567 P)^{2}\right. \\
& +0.0932 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\text {max }}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.038 \text { (9) }
\end{aligned}
$$

Aryl H atoms were placed in ideal positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and treated as riding, with a common refined $U_{\text {iso }}=0.0259(17) \AA^{2}$. Methyl H atoms were constrained in rigid groups with free rotation about the $\mathrm{C}-\mathrm{C}$ bond $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and a common refined $U_{\text {iso }}=$ 0.0388 (14) \AA^{2}.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduc-
tion: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to Dr Andrew Parkin (Glasgow University) for the X-ray data collection.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Miyaura, N. (2002). Editor. Topics in Current Chemistry, Vol. 219. New York: Springer-Verlag.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Norman, R. O. C., Thomas, B. \& Willson, J. S. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 325-332.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

